TwitterInstagramYoutube

Publications

Soft Tensegrity Structures With Variable Stiffness and Shape Changing Ability

  • ​​​​​Schorr, P.; Carrillo Li, E.R.; Kaufhold, T.; Rordiguez Hernandez, J.A.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Kinematic analysis of a rolling tensegrity structure with spatially curved members, Meccanica (2020), Springer, (online first publ.), https://doi.org/10.1007/s11012-020-01199-x

  • Chavez Vega, J.; Schorr, P.; Kaufhold, T.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Influence of Elastomeric Tensioned Members on the Characteristics of Compliant Tensegrity Structures in Soft Robotic Applications, Proceedia Manufacturing, Elsevier, 2020 (accepted paper) https://doi.org/10.1016/j.promfg.2020.11.048

  • Böhm, V.; Schorr, P.; Feldmeier, T.; Chavez-Vega, J.-H.; Henning, S.; Zimmermann, K.; Zentner, L.: An Approach to Robotic End Effectors Based on Multistable Tensegrity Structures
    New Trends in Mechanism and Machine Science, Vol. 89, Pisla, D., Corves, B., Vaida, C. (eds.), Springer, pp. 470-478, 2020. (ISBN: 978-3-030-55060-8) https://doi.org/10.1007/978-3-030-55061-5_53

  • Schorr, P.; Chavez, J.; Zentner, L.; Böhm, V.: Reconfigurable Planar Quadrilateral Linkages Based on the Tensegrity Principle. Mechanism and Machine Science, Vol. 96, Zentner, L., Strehle, S. (eds.), Springer, pp. 48-57, 2021. (ISBN: 978-3-030-61651-9) https://doi.org/10.1016/j.mechmachtheory.2020.104172

  • Schorr, P.; Chavez, J.; Zentner, L.; Böhm, V.: Reconfiguration of planar quadrilateral linkages utilizing the tensegrity principle. J. Mechanism and Machine Theory, Vol. 156 (2021), 104172 https://doi.org/10.1016/j.mechmachtheory.2020.104172

  • Schorr, P.; Zentner, L.; Zimmermann, K.; Böhm, V.: Jumping locomotion system based on a multistable tensegrity structure. J. Mechanical Systems and Signal Processing, Vol. 152 (2021), 107384 https://doi.org/10.1016/j.ymssp.2020.107384

  • Böhm, V.; Schorr, P.; Schale, F.; Kaufhold, T.; Zentner, L.; Zimmermann, K.: Worm-Like Mobile Robot Based on a Tensegrity Structure. 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 2021, pp. 358-363,  https://doi.org/10.1109/RoboSoft51838.2021.9479193

Conference proceedings 

  • Carrillo Li, E.R.; Schorr, P.; Kaufhold, T.; Rordiguez Hernandez, J.A.; Zentner, L.; Zimmermann, K.; Böhm, V. (2019): Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components, Proc. of the 15th Conference on Dynamical Systems - Theory and Applications (Applicable Solutions in Non-Linear Dynamical Systems), Łódź, Poland, pp. 335-344 https://doi.org/10.1007/s11012-020-01199-x

  • Schorr, P.; Schale, F.; Otterbach, J.M.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Investigation of a Multistable Tensegrity Robot applied as Tilting Locomotion System, Proc. of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, August 2020. pp. 2932-2938. https://ieeeexplore.ieee.org/document/9196706

Project

Co-Design of Feedback Control and Soft Morphology for in-Hand Manipulation

  • Zöller, G.; Wall, V.; Brock, O. (2020): Active Acoustic Contact Sensing for Soft Pneumatic Actuators Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020. https://ieeeexplore.ieee.org/document/9196916

  • Wall, V.; Zöller, G.; Brock, O. (2023): Passive and active acoustic sensing for soft pneumatic actuators. The International Journal of Robotics Research;0(0).https://doi.org/10.1177/02783649231168954

Project

Ultra-Soft Long Range Strain and Self-Powered Touch Sensors for Soft Robot Segments

  • Natarajan, T.S.; Finger, S.; Lacayo-Pineda, J.; Bhagavatheswaran, E.S.; Banerjee, S.S.; Heinrich, G.; Das, A. (2020): Robust Triboelectric Generators by All-In-One Commercial Rubbers, ACS Applied Electronic Materials, https://pubs.acs.org/doi/10.1021/acsaelm.0c00846

  • Kumar, M.; Sharma, A.; Hait, S.; Wießner, S.; Heinrich, G.; Arief, I.; Naskar, K.; Stöckelhuber, K.W.; Das, A. (2020) Effect of Prestrain on the Actuation Characteristics of Dielectric Elastomers. Polymers (Basel), https://doi.org/10.3390/polym12112694

  • Mandal, S.; Simon, F.; Banerjee, S.S; Tunnicliffe, L.B.; Nakason, C.; Das, C.; Das, M.; Naskar, K.; Wiessner, S.; Heinrich, G.; Das, A. (2021): Controlled Release of Metal Ion Cross-Linkers and Development of Self-Healable Epoxidized Natural Rubber, ACS Applied Polymer Materials 2021 3 (2), 1190-1202. https://pubs.acs.org/doi/full/10.1021/acsapm.1c00039#

  • Banerjee, S.S.; Mandal, S.; Arief, I.; Layek, R.K.; Ghosh, A.K.; Yang, K.; Kumar, J.; Formanek, P.; Fery, A.; Heinrich, G.; Das, A. (2021): Designing Supertough and Ultrastretchable Liquid MetalEmbedded Natural Rubber Composites for Soft-Matter Engineering, ACS Applied Materials & Interfaces 2021 13 (13), 15610-15620. https://doi.org/10.1021/acsami.1c00374

  • Banerjee, S.S.; Banerjee, S.; Wießner, S.; Janke, A.; Heinrich, G.; Das, A. (2021) : A New Route to Highly Stretchable and Soft Inorganic–Organic Hybrid Elastomers Using Polydimethylsiloxane as Crosslinker of Epoxidized Natural Rubber, https://doi.org/10.1002/mame.202100380

  • Banerjee, S.S.; Arief, I.; Berthold, R.; Wiese, M.; Bartholdt, M.; Ganguli, D.; Mitra, S.; Mandal, S.; Wallaschek, J.; Raatz, A.; Heinrich, G.; Das, A. (2021) : Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator, Applied Materials Today, 25, 2021, 101219, https://doi.org/10.1016/j.apmt.2021.101219 

  • Arief, I.; Zimmermann, P.; Hait, S.; Park, H.; Ghosh, A.K.; Janke, A.; Chattopadhyay, S.; Nagel, J.; Heinrich, G.; Wiessner, S.; Das, A. (2022): Elastomeric Microwell-Based Triboelectric Nanogenerators by in situ Simultaneous Transfer-Printing. Materials Horizons, 2022, Advance Article (https://doi.org/10.1039/D2MH00074A)

Conference proceedings 

  • Arief, I.; Das, A. (2021) : Triboelectric Generators Derived from Commercial Rubbers for Sustainable Energy Harvesting Solutions, ACS Rubber division 199th Technical Meeting presentation (April 27-29, 2021), Ohio

  • Arief, I.; Tharani J.D.; Ijaradar, J.; Heinrich, G.; Das, A. (2021): Commercial Rubber-based Triboelectric Generators for Environmentally Viable Energy Harvesting Applications, Elastomer Use in Sustainable Energy webinar, IOM3 conference (London) on 19th March 2021. 

Project

Design, Modeling and Control of Modular Tendon-Driven Elastic Continuum Mechanisms

  • Deutschmann, B.; Chalon, M.; Reinecke, J.; Maier, M.; Ott, C. (2019): Six DoF Pose Estimation for a Tendon-Driven Continuum Mechanism Without a Deformation Model, IEEE Robotics and Automation Letters (RA-L), Vol. 4, No. 4, pp. 3425 – 3432 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8758878

  • Eugster, S.R.; Harsch, J. (2020) : A Variational Formulation of Classical Nonlinear Beam Theories. In: Abali B., Giorgio I. (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics. Advanced Structured Materials, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-50460-1_9

  • Harsch, J.; Eugster, S.R. (2020) : Finite Element Analysis of Planar Nonlinear Classical Beam Theories. In: Abali B., Giorgio I. (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics.Advanced Structured Materials, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-50460-1_10

  • Reinecke, J.; Deutschmann, B.; Dietrich, A.; Hutter, M. (2020): An Anthropomorphic Robust Robotic Torso for Ventral/Dorsal and Lateral Motion With Weight Compensation. IEEE Robotics and Automation Letters, 5(3), 3876-3883. https://ieeexplore.ieee.org/abstract/document/9050912

  • Deutschmann, B; Monje, C.A.; & Ott, C. (2020): Multi-Input Mulit-Output Fractional Order Control of an Underactuated Continuum, International Journal of Advanced Robotic Systems, 2020. https://doi.org/10.1177/1729881420969578

  • Harsch, J.; Capobianco G.; Eugster S.R. (2021): Finite element formulations for constrained spatial nonlinear beam theories. https://doi.org/10.1177/10812865211000790

  • RAFFIN, A.; Deutschmann, B.; Stulp, F. (2021): Fault-Tolerant Six-DoF Pose Estimation for Tendon-Driven Continuum Mechanisms. Frontiers in Robotics and AI, 8, 11. https://doi.org/10.3389/frobt.2021.619238

  • Capobianco, G.; Harsch, J.; Eugster S.R.; Leine, R.I. (2021) : A nonsmooth generalized-alpha method for mechanical systems with frictional contact,  https://doi.org/10.1002/nme.6801

  • Eugster, S. R., Harsch, J., Herrmann, M., Capobianco, G., Bartholdt, M., Wiese, M.(2022): Soft pneumatic actuator model based on a pressure-dependent spatial nonlinear rod theory, IEEE Robotics and Automation Letters, Vol. 7(2), pp. 2471-2478, 2022. DOI: 10.1109/LRA.2022.3144788

Project

Insect Feet Inspired Concepts Soft Touch Grippers With Dynamically Adjustable Grip Strength

  • Fowler, J.E.; Gorb, S.; Baio, J.E. (2021): Multi technique investigation of a biomimetic insect tarsal adhesive fluid, https://doi.org/10.3389/fmech.2021.681120

  • Rebora, M.; Salerno, G.; Piersanti, S.; Gorb, E.V.; Gorb, S. (2021): Attachment devices and the tarsal gland of the bug Coreus marginatus (Hemiptera: Coreidae), https://doi.org/10.1007/s00435-020-00515-z

  • Zhang, Y.; Ma, S.; Li, B.; Yu, B.; Lee, H.; Cai, M.; Gorb, S.; Zhou, F.; Liu, W. (2021): Gecko's feet inspired self peeling switchable dry/wet adhesive, https://doi.org/10.1021/acs.chemmater.0c04576

  • Walther, M.; Kipke, W.; Schultzke, S.; Ghosh, S.; Staubitz, A. (2021) : Modification of Azobenzenes by cross coupling reactions, 10.1055/s-0040-1706171

  • Schultzke, S.; Walther, M.; Staubitz, A. (2021) : Active ester functionalized Azobenzenes as versatile building blocks, https://doi.org/10.3390/molecules26133916

  • Schultzke, S.; Scheuring, N.; Puylaert, P.; Lehmann, M. ; Staubitz, A. (2023): A Photomechanical Film in which Liquid Crystal Design Shifts the Absorption into the Visible Light Range, https://doi.org/10.1002/advs.202302692

  • Schultzke, S.; Puylaert, P; Wang, H.; Schultzke, I.; Gerken, J. ; Staubitz, A. (2024): Centennial Isomers: A Unique Fluorinated Azobenzene Macrocyclus with Dual Stability Over 120 Years, DOI

Project

Pressure Tolerant Energy Converter for Deep Sea Applications

Project

Development and Characterization of Soft Magnetic Materials With Anisotropy in the Mechanical Properties and Multi-Stimulated Compliance

  • Prem, N.; Schale, F.; Zimmermann, K.; Gowda, D.K.; Odenbach, S. (2021): Synthesis and characterization of the properties of thermosensitive elastomers with thermoplastic and magnetic particles for application in soft robotics, https://doi.org/10.1002/app.51296

Project

Coherent Methodology for Modelling and Design of Soft Material Robots – The Soft Material Robotics Toolbox (SMaRT)

  • Wiese, M.; Rüstmann, K.; Raatz, A. (2019): Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines,  IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Macau, China, https://doi.org/10.1109/IROS40897.2019.8967776

  • Wiese, M.; Runge-Borchert, G.; Raatz, A. (2019): Optimization of Neural Network Hyperparameters for Modeling of Soft Pneumatic Actuators. In: Carbone G., Ceccarelli M., Pisla D. (eds) New Trends in Medical and Service Robotics. Mechanisms and Machine Science, vol 65, Springer, Cham, pp. 199-206, [6-th Int. Workshop on New Trends in Medical and Service Robotics (MESROB), 4-6 July Cassino, Italy], https://doi.org/10.1007/978-3-030-00329-6_23

  • Wiese, M.; Runge-Borchert, G. Cao, B.-H., Raatz, A. (2021): Transfer learning for accurate modeling and control of soft actuators, IEEE 4th Int. Conf. on Soft Robotics (RoboSoft), https://doi.org/10.1109/RoboSoft51838.2021.9479300

  • Runge-Borchert, G.; Wiese, M.; Peters, J.; Raatz, A. (2019): Soft Robotics. In: Handbuch Mensch-Roboter-Kollaboration: R. Müller, J. Franke, D. Henrich, B. Kuhlenkötter, A. Raatz, A. Verl. Carl Hanser Verlag, München, S. 429-442, https://doi.org/10.3139/9783446453760.009

  • Peters, J.; Nolan, E.; Wiese, M.; Miodownik, M.; Spurgeon, S.; Arezzo, A.; Raatz, A. Wurdemann, H.A. (2019): Actuation and Stiffening in Fluid-Driven Soft Robots Using Low-Melting-Point Material. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 2313-2318, https://doi.org/10.1109/IROS40897.2019.8967764

  • Bartholdt, M.; Wiese, M.; Schappler, M.;Spindeldreier, S.; Raatz, A. (2021): A Parameter Identification Method for Static Cosserat Rod Models: Application to Soft Material Actuators with Exteroceptive Sensors. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 624-631, doi: 10.1109/IROS51168.2021.9636447.

  • Berthold, R.;Bartholdt, M. N.; Wiese, M.; Kahms, S.; Spindeldreier, S.; Raatz, A. (2021): A preliminary study of Soft Material Robotic Modelling: Finite Element Method and Cosserat Rod Model. In: 9th International Conference on Control, Mechatronics and Automation (ICCMA), 2021, pp. 7-13, doi: 10.1109/ICCMA54375.2021.9646194.

  • Banerjee, S.S.; Arief, I.; Berthold, R.; Wiese, M.; Bartholdt, M.; Ganguli, D.; Mitra, S.; Mandal, S.; Wallaschek, J.; Raatz, A.; Heinrich, G.; Das, A. (2021) : Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator, Applied Materials Today, 25, 2021, 101219, https://doi.org/10.1016/j.apmt.2021.101219

  • Eugster, S. R.; Harsch, J.; Bartholdt, M.; Herrmann, M.; Wiese, M.; Capobianco, G. (2022): Soft Pneumatic Actuator Model Based on a Pressure Dependent Spatial Nonlinear Rod Theory, In: IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2471-2478, doi: 10.1109/LRA.2022.3144788

  • Mehl, M.; Bartholdt, M.; Schappler, M. (2022): Dynamic Modeling of Soft-Material Actuators Combining Constant Curvature Kinematics and Floating-Base Approach. In: IEEE 5th International Conference on Soft Robotics (RoboSoft), 2022, pp. 1-8, doi: 10.1109/RoboSoft54090.2022.9762177.

Project

Experimental Enriched Beam Model for Robust Simulation of Soft Material Robotic Systems

Project

Enhanced Robotic Gripper Optimisation: Simulation utilising Machine-Learning

  • Götz, H.; Santarossa, A.; Sack, A.;  Pöschel, T. (2022) : Soft particles reinforce robotic grippers: robotic grippers based on granular jamming of soft particles. Granular Matter 24, 31. https://doi.org/10.1007/s10035-021-01193-4

Project

 

Dielectric Elastomers – Soft Material Actuator/Sensor Concepts for Soft Robotic Systems

  • G. Rizzello, G.; Serafino, P.; Naso, D.; Seelecke, S. (2020): Towards Sensorless Soft Robotics: Self-Sensing Stiffness Control of Dielectric Elastomer Actuators, in IEEE Transactions on Robotics, vol. 36, no. 1, pp. 174-188, https://ieeeexplore.ieee.org/document/8877754

  • Nalbach, S.; Banda, R. M.; Croce, S.; Rizzello, G.; Naso, D.; Seelecke, S. (2020): Modeling and Design Optimization of a Rotational Soft Robotic System Driven by Double Cone Dielectric Elastomer Actuators. Front. Robot. AI 6:150. https://doi.org/10.3389/frobt.2019.00150

  • Kunze, J.; Prechtl, J.; Bruch, D.; Nalbach, S.; Motzki, P.; Seelecke, S. ; Rizzello, G. (2020): Design and fabrication of silicone-based dielectric elastomer rolled actuators for soft robotic applications, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 113752D (22 April 2020); https://doi.org/10.1117/12.2558444

  • Prechtl, J.; Kunze, J.; Nalbach, S.; Seelecke, S.; Rizzello, G. (2020): Soft robotic module actuated by silicone-based rolled dielectric elastomer actuators: modeling and simulation, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 113752C (22 April 2020); https://doi.org/10.1117/12.2557736

  • J. Kunze, J. Prechtl, D. Bruch, B. Fasolt, S. Nalbach, P. Motzki, S. Seelecke, and G. Rizzello, “Design, Manufacturing, and Characterization of Thin, Core-Free, Rolled Dielectric Elastomer Actuators,” Actuators, vol. 10, no. 4, p. 69, Mar. 2021 https://doi.org/10.3390/act10040069

Conference proceedings 

  • J. Kunze, J. Prechtl, D. Bruch, S. Nalbach, P. Motzki, S. Seelecke, and G. Rizzello, “Concept and Fabrication of Silicone-based Rolled Dielectric Elastomer Actuators (RDEAs) for Soft Robots," in 17th International Conference on New Actuators, 2021, pp. 1-4 https://doi.org/10.1117/12.2558444

  • J. Prechtl, J. Kunze, S. Seelecke, and G. Rizzello, “Soft Robotic Module Actuated by Silicone-Based Rolled Dielectric Elastomer Actuators - Modeling and Simulation," in 17th International Conference on New Actuators, 2021, pp. 1-4 https://doi.org/10.1117/12.2557736

  • J. Prechtl, J. Kunze, D. Bruch, S. Seelecke, and G. Rizzello, “Bistable Actuation in Multi-DoF Soft Robotic Modules Driven by Rolled Dielectric Elastomer Actuators," in 4th IEEE International Conference on Soft Robotics, 2021, pp. 1-8

  • Prechtl, J.; Kunze, J.; Bruch, D.; Seelecke, S.; Rizzello, G. (2020): “Modeling and Parameter Identification of Rolled Dielectric Elastomer Actuators for Soft Robots," in Electroactive Polymer Actuators and Devices (EAPAD) XXIII, 2021, p. 115871H https://doi.org/10.1117/12.2581019

  • Prechtl, J.; Kunze, J.; Moretti, G.; Bruch, D.; Seelecke, S.; Rizzello. G. (2021): "Modeling and Experimental Validation of Thin, Tightly Rolled Dielectric Elastomer Actuators". Smart Materials and Structures 31, Nr. 1 (November 2021): 015008. https://doi.org/10.1088/1361-665X/ac34be

  • Baltes, M.; Kunze, J.; Prechtl, J.; Motzki, P.; Seelecke, S.; Rizzello, G. (2022): "Soft Robotic Tentacle Arm Element Actuated by Rolled Dielectric Elastomer Artificial Muscles," in Electroactive Polymer Actuators and Devices (EAPAD) XXIV

  • Baltes, M.; Prechtl, J.; Kunze, J.; Rizzello, G. (2022): "Design and Parameter Identification of a Soft Robotic bendable module with Artificial Muscle Fibers," in Actuator - 18th International Conference on New Actuator Systems and Applications

Project

Design Methodology for Soft-Bodied Miniature Robot Locomotion

  • Wang, T.; Ren, Z.; Hu, W.; Li, M.; Sitti, M. (2021) : “ Effect of body stiffness distribution on larval fish–like efficient undulatory swimming,” Science Advances, vol. 7, no. 19, eabf7364,  https://advances.sciencemag.org/content/7/19/eabf7364

  • Hu, X.; Yasa, I.C.; Ren, Z.; Goudu, S.R.; Ceylan, H.; Hu, W.; Sitti, M. (2021) : "Magnetic soft micromachines made of linked microactuator networks," Science Advances, vol. 7, no. 23, eabe8436, https://advances.sciencemag.org/content/7/23/eabe8436

  • Zhang, J.; Ren, Z.; Hu, W.; Soon, R.H.; Yasa, I.C.; Liu, Z.; Sitti, M. (2021) : “Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly,” Science Robotics, vol. 6, no. 53, eabf0112, https://robotics.sciencemag.org/content/6/53/eabf0112

  • Ren, Z.; Zhang, R.; Soon, R.H.; Liu, Z.; Hu, W.; Onck, P.R.; Sitti, M. (2021) : "Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces," Science Advances, vol. 7, no. 27, eabh2022, https://advances.sciencemag.org/content/7/27/eabh2022

  • Sitti, M. (2021) : "Physical intelligence as a new paradigm", Extreme Mechanics Letters, Volume 46, July 2021, 101340, https://www.sciencedirect.com/science/article/pii/S2352431621001012?via%3Dihub

  • Guo, Y.; Zhang, J.; Hu, W.; Muhammad Turab Ali Khan; Sitti, M. (2021) : "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries". Nat Commun 12, 5936 (2021), https://doi.org/10.1038/s41467-021-26136-8 

  • Li, M., Pal, A., Aghakhani, A.; Pena-Francesch, A ; Sitti, M. (2021) : "Soft actuators for real-world applications". Nat Rev Mater 7, 235–249 (2022), https://doi.org/10.1038/s41578-021-00389-7 

  • Fan, X.; Jiang, Y.; Li, M.; Zhang; Y.; Tian, C.; Mao, L.; Xie, H.; Sun, L.; Yang, Z.; Sitti, M. (2022) :  "Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces". Science Advances, vol 8, Issue 37, eabq1677, https://doi.org/10.1126/sciadv.abq1677

  • Hong, C.; Ren, Z.; Wang, C.; Li, M.; Wu, Y.; Tang, D.; Hu, W.; Sitti, M. (2022) : "Magnetically actuated gearbox for the wireless control of millimeter-scale robots". Sci Robot, vol 7, Issue 69, eabo440, https://doi.org/10.1126/scirobotics.abo4401 

  • Ren, Z.; Zhang, M.; Song, S.; Liu, Z.; Hong, C.; Wang, T.; Dong, X.; Hu, W.; Sitti, M. (2022) : "Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation". Science Advances, vol 8, Issue 34 , eabq2345, https://www.science.org/doi/10.1126/sciadv.abq2345 

  • Tang, Y.; Li, M.; Wang, T.; Dong, X.; Hu, W.; Sitti, M. (2022). "Wireless Miniature Magnetic Phase-Change Soft Actuators". Advanced Materials, vol. 34, Issue 40, 2204185, e2204185,  https://doi.org/10.1002/adma.202204185

  • Wang, T.; Ugurlu, H.; Yan, Y.; Li, M.; Wild, A.; Yildiz, M.; Schneider, M.; Sheehan, D.; Hu, W.; Sitti, M.  "Adaptive wireless millirobotic locomotion into distal vasculature". Nature Communications, vol 13, Article number: 4465.  https://doi.org/10.1038/s41467-022-32059-9

  • Wu, Y.; Dong, X.; Kim, J. K.; Wang, C.; Sitti, M. (2022). "Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces". Science advances, vol 8, Issue 21, eabn3431, https://doi.org/10.1126/sciadv.abn343

  • Liu, Z.; Li, M.; Dong, X.; Ren, Z.; Hu, W.; Sitti, M. (2022). "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing". Nature communications, vol 13, Article number: 2016 (2022), https://doi.org/10.1038/s41467-022-29645-2

  • Li, M.; Tang, Y.; Soon, R. H.; Dong, B.; Hu, W.; Sitti, M. (2022). "Miniature coiled artificial muscle for wireless soft medical devices". Science advances, vol 8, Issue 10, eabm5616. https://doi.org/10.1126/sciadv.abm5616

  • Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. (2022). "Soft actuators for real-world applications". Nature reviews. Materials, volume 7, pages235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7

  • Wang, C.; Wu, Y.; Dong, X.; Armacki, M.; Sitti, M. (2023). "In situ sensing physiological properties of biological tissues using wireless miniature soft robots". Science advances, vol 9, Issue 23, eadg3988, https://doi.org/10.1126/sciadv.adg3988

Project

 

MEiTNER - Multifunctional Dielectric Elastomer Electronics for Next Generation Soft Robotics

  • Henke, E.F.M.; Schlatter, S.; Anderson, I.A. (2017):  Soft dielectric elastomer oscillators driving bioinspired robots, Bioinspiration & biomimetics 13 (4), 046009 https://doi.org/10.1089/soro.2017.0022

  • Henke, E.F.M.; Wilson, K.E.; Anderson, I.A. (2018): Modeling of dielectric elastomer oscillators for soft biomimetic applications, Soft robotics 4 (4), 353-366  https://doi.org/10.1088/1748-3190/aac911

  • Henke, E.F.M.; Wilson, K.E.; Slipher, G.A.; Mrozek, R.A.; Anderson, I.A. (2019): Artificial muscle logic devices for autonomous local control, Robotic Systems and Autonomous Platforms, 29-40 https://doi.org/10.1016/B978-0-08-102260-3.00002-0 

  • Ciarella L;, Wilson, K.E; Richter, A; Anderson, I.A; Henke, E.F.M. (2021): Modelling dielectric elastomer circuit networks for soft biomimetics,  Bioinspir. Biomim. 16 065006. https://doi.org/10.1088/1748-3190/ac2786

  • Ciarella, L; Richter, A; Henke, E.F.M. (2021): Digital electronics using dielectric elastomer structures as transistors, Appl. Phys. Lett. 119, 261901. https://doi.org/10.1063/5.0074821

  • Ciarella, L.; Yi, J.; Wilson, K.E.; Richter, A.; Anderson, I.A.; Henke, E.F.M. (2022): Enabling multichannel communication within dielectric elastomers, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, 120420A. https://doi.org/10.1117/12.2612332

  • Yi, J.; Ciarella, L.; Shamraienko, V.; Babick, F.;  Borin, D.; Scharff, M.; Ni, J.; Wilson, K.E.; Richter, A.;  Henke, E.F.M. (2022): Fabrication of piezoresistive devices based on dielectric elastomers via ultrasonic spraying, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, 1204209. https://doi.org/10.1117/12.2611720 

  • Ciarella, L.; Richter, A.;  Henke, E.F.M. (2023): Integrated Logic for Dielectric Elastomers: Replicating the Reflex of the Venus Flytrap, Advanced Materials Technologies. https://doi.org/10.1002/admt.202202000 

Project

 

Other publications

2021

  • Ibrahim, S.; Krause, J. C.; Olbrich, A.; Raatz, A. (2021): Modeling and Reconstruction of State Variables for Low-Level Control of Soft Pneumatic Actuators. In: Frontiers in Robotics and AI, Vol. 8, 32 pages, https://doi.org/10.3389/frobt.2021.557830

2020

  • Boyraz, P.; Tappe, S.; Ortmaier, T.; Raatz, A. (2020): Design of a Low-cost Tactile Robotic Sleeve for Autonomous Endoscopes and Catheters. In: Measurement and Control, (14 pages), DOI: https://doi.org/10.1177/0020294019895303

  • Garcia Morales, D. S.; Ibrahim, I.; Cao, B.-H.; Raatz, A. (2020): Design and Characterization of a 3D Printed Soft Pneumatic Actuator. In: Pisla, D.; Corves, B.; Vaida, C. (Eds.) New Trends in Mechanism and Machine Science (EuCoMeS), Springer, MMS 89, pp. 488-495, https://doi.org/10.1007/978-3-030-55061-5_55

2019

  • Ibrahim, S.; Krause, J. C.; Raatz, A. (2019): Linear and Nonlinear Low Level Control of a Soft Pneumatic Actuator, 2nd IEEE Int. Conf. on Soft Robotics (RoboSoft), Seoul, Korea (South), pp. 434-440, https://ieeeexplore.ieee.org/document/8722737

  • Krause, J. C.; Ibrahim, S.; Raatz, A. (2019): Evaluation Environment for Control Design of Soft Pneumatic Actuators, Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter, Springer Vieweg, Berlin, Heidelberg, pp. 74-83, (9 pages) https://doi.org/10.1007/978-3-662-59317-2_8

2018 

  • Boyraz, P.; Runge, G.; Raatz, A. (2018): An Overview of Novel Actuators for Soft Robotics. In: Actuators 2018, 7(3), 48, (21 pages), https://doi.org/10.3390/act7030048

  • Preller, T.; Runge, G.; Zellmer, S.; Menzel, D., Saein, S.A.; Raatz, A. Tiersch, B.; Koetz, J.; Garnweitner, G. (2019): Particle-Reinforced and Functionalized Hydrogels for SpineMan, a Soft Robotics Application, Journal of Materials Science, Vol. 54, pp. 4444-4456, https://doi.org/10.1007/s10853-018-3106-6

2017

  • Blankemeyer, S.; Losensky, J.; Peters, J.; Raatz, A.: Design principles for stiffness adjustment in soft material robotics using layer jamming. In: Proc. of the Int. Conf. on Engineering, Science, and Applications (ICESA), 2017, Vol. 1, pp. 39-56, (Global Academic-Industrial Cooperation Society (GAICS)), Tokyo, 2017, ISSN 2521-3717, (27 pages)

  • Runge, G.; Peters, J.; Raatz, A. (2017): Design Optimization of Soft Pneumatic Actuators Using Genetic Algorithms. In: IEEE Int. Conf. on Robotics and Biomimetics (RoBio 2017), pp. 393- 400 (8 pages), https://ieeeexplore.ieee.org/document/8324449

  • Runge, G.; Wiese, M.; Raatz, A. (2017): FEM-Based Training of Artificial Neural Networks for Modular Soft Robots. In: IEEE Int. Conf. on Robotics and Biomimetics (RoBio 2017), pp. 385- 392 (8 pages), https://ieeeexplore.ieee.org/document/8324448

  • Runge, G.; Wiese, M.; Günther, L.; Raatz, A.: A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics. In: IEEE Int. Conf. on Control, Automation and Robotics (ICCAR 2017), 2017, eISBN 978-1-5090-6088-7, (8 pages), https://ieeeexplore.ieee.org/document/7942652

  • Runge, G.; Raatz, A.: A framework for the automated design and modelling of soft robotic systems. In: CIRP Annals - Manufacturing Technology, Elsevier B.V., 2017, Vol. 66/1, pp. 9-12, ISSN 0007-8506, (4 pages), https://doi.org/10.1016/j.cirp.2017.04.104

2015

  • Raatz, A.; Blankemeyer, S.; Runge, G.; Bruns, S.; Borchert, G.: Opportunities and Challenges for the Design of Inherently Safe Robots. In: Verl, A.; Albu-Schäffer, A.; Brock, O.; Raatz, A. (Eds.): Soft Robotics – Transferring Theory to Application, Springer, 2015, pp. 173-183, (11 Seiten) ISBN 978-3-662-44505-1, https://doi.org/10.1007/978-3-662-44506-8_15

  • Runge, G.; Preller, T.; Zellmer, S.; Blankemeyer, S.; Kreuz, M.; Garnweitner, G.; Raatz, A.: SpineMan: Design of a Soft Robotic Spine-Like Manipulator for Safe Human-Robot Interaction. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2015, pp. 1103-1110 (8 pages) https://ieeeexplore.ieee.org/document/7353508

  • Runge, G.; Zellmer, S.; Preller, T.; Garnweitner, G.; Raatz, A.: Actuation Principles for the Bioinspired Soft Robotic Manipulator SpineMan. In: IEEE Int. Conf. on Robotics and Biomimetics (RoBio), 2015, pp.1329-1336 (8 pages) https://ieeeexplore.ieee.org/document/7418955

©2024 match. All rights reserved.

top