TwitterInstagram

Publications

Soft Tensegrity Structures With Variable Stiffness and Shape Changing Ability

  • Carrillo Li, E.R.; Schorr, P.; Kaufhold, T.; Rordiguez Hernandez, J.A.; Zentner, L.; Zimmermann, K.; Böhm, V. (2019): Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components, Proc. of the 15th Conference on Dynamical Systems - Theory and Applications (Applicable Solutions in Non-Linear Dynamical Systems), Łódź, Poland, pp. 335-344
  • Schorr, P.; Schale, F.; Otterbach, J.M.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Investigation of a Multistable Tensegrity Robot applied as Tilting Locomotion System, Proc. of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, August 2020. pp. 2932-2938.
  • Schorr, P.; Carrillo Li, E.R.; Kaufhold, T.; Rordiguez Hernandez, J.A.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Kinematic analysis of a rolling tensegrity structure with spatially curved members, Meccanica (2020), Springer, (online first publ.), doi.org/10.1007/s11012-020-01199-x
  • Chavez Vega, J.; Schorr, P.; Kaufhold, T.; Zentner, L.; Zimmermann, K.; Böhm, V. (2020): Influence of Elastomeric Tensioned Members on the Characteristics of Compliant Tensegrity Structures in Soft Robotic Applications, Proceedia Manufacturing, Elsevier, 2020 (accepted paper)

Project

Co-Design of Feedback Control and Soft Morphology for in-Hand Manipulation

  • Zöller, G.; Wall, V.; Brock, O. (2020): Active Acoustic Contact Sensing for Soft Pneumatic Actuators Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2020.

Project

Ultra-Soft Long Range Strain and Self-Powered Touch Sensors for Soft Robot Segments

Design, Modeling and Control of Modular Tendon-Driven Elastic Continuum Mechanisms

  • Eugster S.R., Harsch J. (2020) A Variational Formulation of Classical Nonlinear Beam Theories. In: Abali B., Giorgio I. (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics. Advanced Structured Materials, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-50460-1_9
  • Harsch J., Eugster S.R. (2020) Finite Element Analysis of Planar Nonlinear Classical Beam Theories. In: Abali B., Giorgio I. (eds) Developments and Novel Approaches in Nonlinear Solid Body Mechanics.Advanced Structured Materials, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-50460-1_10
  • Monje, C.A.; Deutschmann, B; Ott, C. (2020): IMO Fractional Order Control of an Underactuated Continuum, International Journal of Advanced Robotic Systems, 2020.
  • Deutschmann, B.; Chalon, M.; Reinecke, J.; Maier, M.; Ott, C. (2019): Six DoF Pose Estimation for a Tendon-Driven Continuum Mechanism Without a Deformation Model, IEEE Robotics and Automation Letters (RA-L), Vol. 4, No. 4, pp. 3425 – 3432

Project

Insect Feet Inspired Concepts Soft Touch Grippers With Dynamically Adjustable Grip Strength

Pressure Tolerant Energy Converter for Deep Sea Applications

  • Stoeffler, C.; Kumar, S.; Müller, A. (2020): A Comparative Study on 2-DOF Variable Stiffness Mechanisms, Advances in Robot Kinematics (ARK)

Project

Development and Characterization of Soft Magnetic Materials With Anisotropy in the Mechanical Properties and Multi-Stimulated Compliance

Coherent Methodology for Modelling and Design of Soft Material Robots – The Soft Material Robotics Toolbox (SMaRT)

  • Wiese, M.; Rüstmann, K.; Raatz, A. (2019): Kinematic Modeling of a Soft Pneumatic Actuator Using Cubic Hermite Splines,  IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Macau, China

Project

Experimental Enriched Beam Model for Robust Simulation of Soft Material Robotic Systems

Enhanced Robotic Gripper Optimisation: Simulation utilising Machine-Learning

Dielectric Elastomers – Soft Material Actuator/Sensor Concepts for Soft Robotic Systems

  • G. Rizzello, G.; Serafino, P.; Naso, D.; Seelecke, S. (2020): Towards Sensorless Soft Robotics: Self-Sensing Stiffness Control of Dielectric Elastomer Actuators, in IEEE Transactions on Robotics, vol. 36, no. 1, pp. 174-188, doi: 10.1109/TRO.2019.2944592.
  • Nalbach, S.; Banda, R. M.; Croce, S.; Rizzello, G.; Naso, D.; Seelecke, S. (2020): Modeling and Design Optimization of a Rotational Soft Robotic System Driven by Double Cone Dielectric Elastomer Actuators. Front. Robot. AI 6:150. doi: 10.3389/frobt.2019.00150
  • Kunze, J.; Prechtl, J.; Bruch, D.; Nalbach, S.; Motzki, P.; Seelecke, S. ; Rizzello, G. (2020): Design and fabrication of silicone-based dielectric elastomer rolled actuators for soft robotic applications, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 113752D (22 April 2020); https://doi.org/10.1117/12.2558444
  • Prechtl, J.; Kunze, J.; Nalbach, S.; Seelecke, S.; Rizzello, G. (2020): Soft robotic module actuated by silicone-based rolled dielectric elastomer actuators: modeling and simulation, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 113752C (22 April 2020); https://doi.org/10.1117/12.2557736

Project

Design Methodology for Soft-Bodied Miniature Robot Locomotion

MEiTNER - Multifunctional Dielectric Elastomer Electronics for Next Generation Soft Robotics

©2020 match. All rights reserved.

top