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Abstract—Soft robots provide a pathway to accurately mimick-
ing biological creatures and being integrated in their environment
with minimal invasion or disruption to their ecosystem. These
robots made from soft deforming materials possess structural
properties and behaviors comparable to the bodies and organs of
living creatures. However, they are difficult to develop in terms of
integrated actuation and sensing, accurate modeling, and precise
control. This article presents a soft robotic fish inspired from
the Pangasius fish. The robot employs a finray actuator driven
by a servo motor, to act as the body of the robot and provide
the undulatory motion to the caudal fin of the fish. To address
the modeling and control challenges, reinforcement learning (RL)
is proposed as a model-free control strategy for the robot fish
to swim and reach a specified target goal. By training and
investigating the RL through experiments on the real hardware,
we illustrate the capability of the fish to learn and achieve the
required task.

Index Terms—Soft Robotics, Underwater Robotics, Biomimet-
ics, Reinforcement Learning.

I. INTRODUCTION

NDERWATER depths have proven to be very chal-

lenging environments for humans to venture into. Re-
searchers and engineers strive to build underwater robotic
systems to accomplish this dangerous endeavor. From oceanic
investigation and marine life exploration, to execution of
underwater missions and sample gathering, to monitoring
and maintenance of offshore and underwater structures, many
complex tasks need to be done in harsh unpredictable con-
ditions. Leveraging the new technological advancements in
biomimetics and soft robotics provides promising solutions to
build robotic systems capable of operating more naturally and
withstanding these harsh environments.

Studying the various biological marine creatures offers
insights on the characteristics allowing them to live in and
populate vast oceanic regions. Taking inspiration from the
morphologies of underwater living organisms, their techniques
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for swimming and locomotion, and their sensory capabilities
aids in the development of bioinspired robotic systems similar
to these creatures, making these robots more suitable for un-
derwater applications. Swimming motion amongst underwater
creatures shows a variety of locomotion techniques, guided by
the morphological structures and shapes of such creatures [1].
The majority of aquatic creatures possess compliant bodies and
rely on their body deformation to generate the thrust needed
for locomotion.

The field of soft robotics offers successful approaches for
building bioinspired robotic systems in general [2], and more
specifically robots inspired from biological marine creatures.
The use of soft materials to develop robots with compliant
bodies and large degrees of freedom can take us a step closer
to mimicking creatures with complex locomotion [3]. Several
attempts have been made to exploit their deformability to
design biomimetic soft robots capable of imitating biological
swimming motion [4]. One approach made use of hydraulic
elastomers to develop a soft robotic fish capable of performing
several swimming maneuvers [5]. Another bioinspired robotic
fish uses Ionic Polymer-Metal Composite (IPMC) actuators as
the pectoral and caudal fins [6]. Another team was able to
mimic the cephalopod molluscs by using hydraulic smart soft
bending actuators to build the tentacles that aid the cephalopod
in maneuvering [7]. A brittle star-inspired soft robot uses
twenty Shape Memory Alloy (SMA) wires to actuate five
flexible legs and perform underwater crawling [8].

One of the biggest challenges in soft robotics are the
modeling and control of these non-linear complex systems [9].
Researches have been tackling these challenges using various
approaches [10]. Model-free control doesn’t require a model
or prior information about the system, but relies mainly on
the input-output behavior collected directly from the system
to learn an approximate representation of it. Reinforcement
learning (RL) is one of these model-free control techniques
that have been providing promising results in recent years [11].
RL is a data-driven learning process that depends on having the
agent interact with its environment by taking certain actions
and observing its new state. The agent is then given a reward
based on the task it needs to complete and the RL algorithm
learns a policy to map the state-action pairs. In particular, RL
has been implemented for soft robotics control in general and
in the case of underwater soft robotics specifically [12].

One group used a Q-learning algorithm with experience
replay to maximize the swimming speed of a cuttlefish soft



robot actuated by a dielectric elastomer (DE) membrane [13].
A soft robot actuated by shape memory alloys (SMAs) uses Q-
learning to learn a control policy for end effector locomotion
[14]. One approach used a deep deterministic policy gradient
(DDPG) algorithm to learn a control policy for soft continuum
arms [15]. However, training RL agents is a costly process
in terms of computation time and resources, and it becomes
more complex for soft robots due to their non-linear dynamics
and elastic properties. To solve this problem, a research group
implemented an RL method that ignores the soft materials
properties and structure of the robot, and it was applied on
the Honeycomb PneuNets soft robot [16].

In this paper, we propose a design for a biomimetic fish
robot inspired from the pangasius fish, using the finray concept
for soft body actuation to mimc the fish’s body and tail
undulation. We investigate the use of three RL algorithms to
teach the robot to swim to a specific goal.

II. METHODS
A. Pangasius Fish Morphological Analysis

In order to build a soft underwater robot that mimics fish
locomotion, an actual fish is studied through visual motion
analysis to obtain insight and parameters relevant to the design
and control of the equivalent biomimetic fish robot. Markerless
tracking was used by preparing a motion capture setup. It is
comprised of water tank of dimensions 120 x 70 cm and a
Logitech C920 visual monocular camera. The fish recorded
for the analysis is from the Pangasius genus, a fresh water
class of medium-large to very large shark catfishes, as shown
in Figure 1.

1) Pose Estimation: Studying the swimming patterns and
motion of the fish requires performing pose estimation on the
recorded video data to track the deformation and motion of
the fish’s different body parts during its swimming sequences.
The pose estimation step was performed using DeepLabCut, a
deep learning platform for markerless animal pose estimation
[17].

During the pose estimation process, three body parts of the
fish are defined to be tracked: the head, the center of the
pectoral fins, and the caudal fin. Several samples were taken
from the captured videos and annotated with the body parts.
A ResNet neural network with 152 layers is trained using the

Fig. 1: Real Pangasius fish anatomy captured by image pro-
cessing motion system that presents the real dimension and
morphological structure for the fish.

video streams to estimate the position of these points. The
network was trained for 200000 epochs reaching training and
testing errors approximately 3 and 6 pixels, respectively.

2) Swimming Analysis: After obtaining the positions of
the needed body parts, further analysis is conducted on the
predicted pose of the fish to investigate the important pa-
rameters responsible for the swimming motion of the fish,
which should help design the biomimetic fish. Such crucial
parameters include the fish’s tail frequency and amplitude, and
the resulting velocity at which the fish is able to swim due
to its undulating motion. During carangiform swimming, the
locomotion rely mostly on the undulation motion of the body
and caudal fin (tail), while the pectoral, pelvic, and dorsal fins
help the fish balance and swim up and down. By analyzing
several sample videos of the fish’s swimming, the tracking of
the tail’s motion, allows us to obtain the undulation frequency
of the fish’s body. While stationary, the frequency of the tail
ranged from 0.7 to 2 Hz. During low-speed swimming, the
frequency ranged from 1 to 2.5 Hz, while it reached up to 4.5
Hz during high-speed swimming. The attained speed during
low-speed swimming was in the range of 5 to 6 cm/sec, and
up to 65 cm/sec for high-speed swimming.

III. RESULTS

A. Soft Biomimetic Pangasius Fish Robot Design and Proto-
typing

The soft biomimetic Pangasius fish is designed based on
the dimensions of the real fish that is captured using the
vision system, as described previously. The robot dimensions
is scaled to double dimensions of real fish. The design is
distributed to main four parts; fish head, fish body, caudal
fin and pectoral fin as shown in Figure 2 (a) and (b). The
fish body is responsible on undulation motion needed to move
fish in the water. Soft finray actuator is selected to mimic
the needed motion. The finray actuator consists of a flexible
outer body, rigid links between its segmentation and rigid
connections between the servo motor - source of actuation -
and the actuating points in the finray itself as shown in Figure
2 (c).

Different manufacturing techniques based on additive man-
ufacturing are followed to produce the biomimetic Pangasius
robot [18]. Due to high complexity of fish head part, selective
laser sintering (SLS) is selected for the production using
Sinterit Lisa Pro ™. The material used for SLS printing is
PA12 Smooth, Nylon based material that is selected for its
high durability. For flexible finray, high hyperelastic material
is needed for its construction and due to its low of its
complexity of design. Fused Deposition Modelling FDM 3D
printer is selected to manufacture this part using Felix 4Tec
™ with flexible material; Extrudr FLEX ™ medium material.
Finally, high rigidity material is needed for rigid links and
rigid connectors to withstand with tension forces exerted
by servo motor. The material being used is glass-reinforced
epoxy laminate material (FR-4) and is cut through CO2 laser
machine.
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Fig. 2: Soft biomimetic Pangasius fish geometrical design. (a)
Detailed design with approximate double scale of real fish
dimensions. (b) Complete CAD of robot. (C) Finray actuator
design and dimensions

B. Reinforcement Learning

The main objective of this experiment is to make the soft
robot swim to a certain predetermined goal location in the
tank. The setup is as shown in Figure 3. The tank and robot
are monitored using a Logitech Brio camera at 60 fps that
captures the environment and feeds the frames to DeepLabCut
to perform pose estimation. To perform reinforcement learning
training, generally simulation tools are first used to train the
agent, then the learning is transferred to the actual robot.
However, due to the complexity of simulating soft materials
that exhibit high deformation and the fluid-structure interaction
between the robot and environment, the RL training algorithm
was implemented directly on the experimental setup. By using
stable baselines 3 [19] on top of OpenAl Gym [20], the RL
environment is built by defining the observations and actions
spaces for the agent.

Markless State
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@ ___@ RL Training
~
-
Robot Tracking

Servo Control
Signals

Fig. 3: Schematic of the experiment setup

The actual possible actions for the robot could be described
as a continuous space of varying servo speeds and angles,
up to the maximum values according to the servo’s specifica-
tions. However, having a continuous action space could make
the problem more complex to solve for the RL algorithm.
Hence, the discretization of the actions would help simplify
the task. Thus, the oscillation of the servo is fixed as the
maximum travel of the servo, which is 130° according to
the manufacturer’s specifications. The servo oscillation speed
becomes the only variable for the actions. By using the fish
swimming analysis as a base, several oscillatory frequencies
of the tail were chosen to be applied as the varying speed of
the actuation servo motor. These speeds comprise the action
space of the robot. A total of 10 actions are defined, ranging
between 110 and 200 milliseconds to perform a tail stroke,
with a 10 milliseconds step.

The observations space is comprised of several parameters
related to the robot and its environment. First, the x and y
positions are obtained from the state estimation performed
through DeepLabCut for 3 points on the robot: the head, the
servo horn, and the tail. The distances in the x and y directions
between the robot’s head and the destined goal point are also
added. Finally, a queue of previous actions is appended to the
state.

St = {pl(‘ray)taPQ(xay)tapl?)(xvy)h5xt75ytaat7ka ~~>at71}
()
a;=0,...,9 2)

where s is the observation space. p1(z,y), p2(z,v), p3s(z,y)
are the x and y coordinates for the head, servo horn, and
tail at step ¢, respectively. dz and dy are the x and y
distances between the robot’s head point and the current goal.
a is the action space consisting of 10 actions from 0 to 9,
corresponding to the servo speed ranging from 110 to 200
milliseconds, with an increment of 10 milliseconds. k is taken
as 100, which is the predefined maximum episode length for
this experiment.

Two goals are defined at the two ends of the tank. The
robot’s task is to reach the current goal, then the goal changes
to the other end once the robot succeeds. To simplify the
task, an error tolerance is defined and the robot is considered
successful in reaching the target if it swims within a distance of
50 pixels away from the target. The reward function r defined
to achieve the task is:

—disty
rr=axe P

— p(disty ¥ iy) 3)

where the reward is the exponential of the euclidean distance
dist between the robot and the goal and a penalty term as a
factor of the distance and the episode step 7. 3 is a reward
decay factor, « is a reward multiplier, and ¢ is a penalty factor.
An additional reward is added when the robot reaches the goal
point. Due to the fact that the only terminal state for an episode
is reaching the goal with no specific failure state, a maximum
limit for steps per episode is defined and the penalty applied
to the reward relied on the number of steps elapsed during the
episode, increasing as the episode goes longer. The steps limit



and the variable factors in the reward function were chosen by
trial. Maximum steps per episode, «, 3, ¢, and goal reward
are set as 100, 10, 200, 10~5, and 200, respectively.

To train the robot, three RL algorithms are used to compare
their performances. The first two are on-policy algorithms:
proximal policy optimization (PPO) [21] and actor-critic
(A2C) [22], which are policy-gradient methods. The third one
is the deep g-network (DQN) [23], an off-policy value-based
method. Due to the hardware limitation, each algorithm was
trained for about 25000 steps to compare their performance.
The mean reward per episode for the three algorithms during
the training steps is shown in Figure 4. Taking into account
these results, the PPO algorithm is chosen to be used for
further training. Three PPO agents with different random seeds
were trained for about 50000 steps each. The agents’ losses
during training are shown in Figure 5. The best agent is tested
on the task to reach the goal within the least amount of steps.
Figure 6 shows the path and actuation oscillation frequencies
taken by the robot to reach the two defined goals.

IV. CONCLUSION

In conclusion, this paper proposed a design for a biomimetic
soft robotic fish inspired from the Pangasius fish. The soft
robot utilizes a finray actuator made from soft elastic materials
and is driven by a servo motor. The deformation of the soft
finray tail of the robot fish mimics the undulatory motion of
the Pangasius fish during carangiform swimming. The varying
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Fig. 4: Mean episode reward during training of the three
algorithms
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Fig. 6: Results of the test run (a) The path taken by the robot
to reach the two goals. (b) The sequence of actions represented
as varying tail stroke time by changing the servo speed.

undulation frequency of the tail allows the robot to perform
underwater locomotion similar to the actual fish.

We also investigate the possibility of learning a control
policy to teach the robot a certain task, which is reaching
a specific target goal in this case. By using reinforcement
learning (RL), the robot was able to learn to reach two different
goals at opposite locations in the tank. Despite the complexity
of the soft robot dynamics, the fluid-structure interaction, and
the hydrodynamic forces, the learning process provides good
results for the specified task. Training the agent for more steps
would possibly allow it to exploit the environment more and
learn more complex swimming behavior.

However, one of the main challenges was running the RL
training directly on the robotic hardware. The number of
training episodes and the possibility to train multiple agents
becomes limited as the training is time consuming and it
affects the lifespan, durability, and the properties of the soft
material, changing its behavior with time. One solution would
be the development of an appropriate physics simulator capa-
ble of simulating and performing RL on multi-body soft robots
within underwater environments, then optimizing the learning
through sim-to-real techniques. Future work could incorporate
differentiable simulators and neural network hydrodynamic
simulations to achieve this purpose.

ACKNOWLEDGMENT

The Authors would like to thank the Academy of Scientific
Research and Technology (ASRT) for funding the project



#4779 and Nile University for facilitating all procedures
required to complete this study.

[1]

[3]

[4]
[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

L. Maddock, Q. Bone, J. M. Rayner et al., The Mechanics and
Physiology of Animal Swimming. Cambridge University Press, 1994.
S. Kim, C. Laschi, and B. Trimmer, “Soft robotics: a bioinspired
evolution in robotics,” Trends in biotechnology, vol. 31, no. 5, pp. 287—
294, 2013.

M. Hermes, M. Ishida, M. Luhar, and M. T. Tolley, “Bioinspired shape-
changing soft robots for underwater locomotion: Actuation and opti-
mization for crawling and swimming,” Bioinspired Sensing, Actuation,
and Control in Underwater Soft Robotic Systems, pp. 7-39, 2021.

A. Ming and W. Zhao, “Design of biomimetic soft underwater robots,”
in Mechatronic Futures. Springer, 2016, pp. 91-111.

R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration
of underwater life with an acoustically controlled soft robotic fish,”
Science Robotics, vol. 3, no. 16, 2018.

T. Yang and Z. Chen, “Development of 2d maneuverable robotic fish
propelled by multiple ionic polymer-metal composite artificial fins,”
in 2015 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2015, pp. 255-260.

Z. Shen, J. Na, and Z. Wang, “A biomimetic underwater soft robot in-
spired by cephalopod mollusc,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2217-2223, 2017.

Z.J. Patterson, A. P. Sabelhaus, K. Chin, T. Hellebrekers, and C. Majidi,
“An untethered brittle star-inspired soft robot for closed-loop underwater
locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2020, pp. 8758-8764.

D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,”
Nature, vol. 521, no. 7553, pp. 467-475, 2015.

T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control
strategies for soft robotic manipulators: A survey,” Soft robotics, vol. 5,
no. 2, pp. 149-163, 2018.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren, “Deep reinforce-
ment learning for soft, flexible robots: Brief review with impending
challenges,” Robotics, vol. 8, no. 1, p. 4, 2019.

T. Yang, Y. Xiao, Z. Zhang, Y. Liang, G. Li, M. Zhang, S. Li, T.-W.
Wong, Y. Wang, T. Li et al., “A soft artificial muscle driven robot with
reinforcement learning,” Scientific reports, vol. 8, no. 1, pp. 1-8, 2018.
W. Liu, Z. Jing, H. Pan, L. Qiao, H. Leung, and W. Chen, “Distance-
directed target searching for a deep visual servo sma driven soft robot
using reinforcement learning,” Journal of Bionic Engineering, vol. 17,
no. 6, pp. 1126-1138, 2020.

S. Satheeshbabu, N. K. Uppalapati, T. Fu, and G. Krishnan, “Continuous
control of a soft continuum arm using deep reinforcement learning,” in
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft).
IEEE, 2020, pp. 497-503.

H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, “Toward
effective soft robot control via reinforcement learning,” in International
Conference on Intelligent Robotics and Applications. Springer, 2017,
pp. 173-184.

A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W.
Mathis, and M. Bethge, “Deeplabcut: markerless pose estimation of
user-defined body parts with deep learning,” Nature Neuroscience, 2018.
[Online]. Available: https://www.nature.com/articles/s41593-018-0209-y
Y. L. Yap, S. L. Sing, and W. Y. Yeong, “A review of 3d printing
processes and materials for soft robotics,” Rapid Prototyping Journal,
2020.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1-8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928-1937.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.



