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Multimodal Proximity and Visuotactile Sensing with a Selectively
Transmissive Soft Membrane

Jessica Yin, Gregory M. Campbell, James Pikul, and Mark Yim

Abstract—The most common sensing modalities found in a
robot perception system are vision and touch, which together
can provide global and highly localized data for manipulation.
However, these sensing modalities often fail to adequately capture
the behavior of target objects during the critical moments as they
transition out of static, controlled contact with an end-effector
to dynamic and uncontrolled motion. In this work, we present a
novel multimodal visuotactile sensor that provides simultaneous
visuotactile and proximity depth data. The sensor integrates
an RGB camera and air pressure sensor to sense touch with
an infrared time-of-flight (ToF) camera to sense proximity by
leveraging a selectively transmissive soft membrane to enable
the dual sensing modalities. We present the mechanical design,
fabrication techniques, algorithm implementations, and evalua-
tion of the sensor’s tactile and proximity modalities. The sensor
is demonstrated in three open-loop robotic tasks: approaching
and contacting an object, catching, and throwing. The fusion
of tactile and proximity data could be used to capture key
information about a target object’s transition behavior for sensor-
based control in dynamic manipulation.

I. INTRODUCTION

Approaches to perception for robot manipulation have
largely mimicked the human form, focusing on the develop-
ment and integration of vision sensors far from the target
object and compliant tactile sensors embedded in the end
effector. However, robots still struggle to achieve dexterous
and dynamic manipulation capabilities comparable to humans,
particularly in the case of deformable objects. This can be
largely attributed to uncertainties stemming from an imperfect
perception of the target object [1]. The accuracy of the object’s
pose estimation can make the difference between success and
failure, which can be seen in “basic” tasks such as grasping,
but is further amplified in dexterous and dynamic tasks that
lack simple contact models and quasi-static assumptions to
inform the interaction [2].

While vision sensors provide rich data about the environ-
ment and can be used to localize the target object within
it, the localization estimate is not very precise – typically
within a few centimeters around the object. Additionally,
vision sensors are frequently occluded by robot arms as they
reach towards the target or by clutter in the environment.
An obvious short-term solution may be to simply add more
cameras, but complete coverage of the target and workspace is
not guaranteed even with multiple cameras and is not practical
for real-world environments.

Tactile sensors on robot fingers and palms have been ex-
plored as a potential solution to provide more precise data
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Fig. 1. A. Proximity depth map from internal depth camera. B. Image from
internal RGB camera for tactile data.

about the object during contact, such as location and forces
[3]. These sensors are usually designed to have mechanical
compliance for increased robustness to unexpected contacts
and greater functionality with the irregular or delicate geome-
tries found in everyday objects. However, tactile sensors are
only useful once the object is already in contact with the end
effector, which may not be sufficient for tasks that require
bringing the object in and out of contact, such as dynamic
reorientation.

This points to a fundamental gap in a perception pipeline
that only uses vision and touch. Closing this perception gap
is necessary to create a robust perception pipeline that will
allow robots to tackle more difficult manipulation tasks. A
potential solution to address this gap is adding a proximity
sensing modality, which can be defined as sensing within
a short distance range originating from the locations of the
tactile sensors [4]. Proximity sensing can provide the precise
localization data that vision sensors lack and information about
pre- and post-contact behavior that is difficult to predict due
to complex frictional dynamics.

In this paper, we propose a novel multimodal proximity
and visuotactile sensor that provides simultaneous tactile and
proximity depth data. The sensor is able to detect contact over
an inflated 96mm by 54mm elastomer membrane with an RGB
camera (960x540) and air pressure sensor, while providing
depth data with an infrared (IR) ToF camera (640x480) at a
synchronous sampling rate of 30Hz. An infrared-transmissive
and visibly translucent elastomer membrane, embedded with
UV-phosphorescent particles, enables the simultaneous reading
of visible tactile data on the membrane and IR proximity
data. We introduce a sensor fusion algorithm that uses both
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Fig. 2. A. Soft membrane in ambient room light. B. Soft membrane with UV-phosphorescent dot grid pattern activated by 365nm UV light. C. Overview of
sensor system. D. Sensor mounted on UR10 robot arm.

the RGB image and depth image to correct for the effect
of the embedded particles in the depth image, and evaluate
the depth data up to 100mm from the sensing surface. The
sensor is integrated into an end-effector and mounted on a
UR10 (Universal Robots) robot arm and demonstrated with
the following open-loop tasks: approach and contact, catching,
and throwing.

II. DESIGN AND FABRICATION

A. Selectively Transmissive Soft Membrane

We designed the soft membrane for selective transmission
to achieve the following: (1) allow the infrared light (860nm)
emitted by the time-of-flight camera to pass through, (2) block
most of the visible light (400nm-700nm) from the external
environment, and (3) enable the activation of the phosphores-
cent, light-emitting particles (∼500nm) on the inner surface
from internal UV LEDs (365nm). Blocking external visible
light enhances the visual contrast with the green-colored
phosphorescent particles (Figure 2A, 2B), facilitating the facile
application of off-the-shelf OpenCV algorithms for tracking
[5]. Additionally, the membrane is designed to be physically
resilient for repeated use in contact-rich interactions, while
providing a highly compliant contact surface. The thickness
of the membrane can be decreased for greater infrared light
transmissivity, but at the cost of reduced physical robustness
and opacity to external light.

We fabricate the membrane in layers; each silicone elas-
tomer layer fully cures prior to pouring the next layer. The
first layer consists of Ecoflex 00-30 mixed by hand with a dye
solution (Epolight 7276B; Epolin, dissolved in chloroform,
5.325g/L concentration) in a 15:1 (mL) elastomer to dye
solution ratio. The dye solution is visibly opaque and infrared
transmissive. We pour 8.25g of the dyed elastomer into an
Ease-Release-coated laser cut mold and place it in a vacuum
degassing chamber for 10 minutes. Then, the mold is placed
on a hot plate and heat-cured at 100°C for 10 minutes.

The next layer consists of the UV-phosphorescent particles
in a dot grid pattern. The UV-phosphorescent particles are
made of Cu:ZnS (copper doped zinc sulfide, 35 microns;
Technoglow). We mixed 0.2g of Cu:ZnS with 2g of Ecoflex
00-30 by hand. We laser cut a 0.508mm stencil made of clear
PVC to the shape of the membrane and desired dot grid pattern
(1mm diameter, 4mm uniform spacing, 328 total dots). We
press the stencil onto the membrane to remove air bubbles

and the Cu:ZnS elastomer mixture is spread onto the surface
with a q-tip. The membrane cures on a hot plate at 100°C for
10 minutes.

The final layer evens out the protrusions from the dot grid
layer and leaves a slightly matte finish to reduce specular
reflections from the infrared and UV lights. We mix Ecoflex
00-30 with NOVOCS Matte silicone solvent (Smooth-On) in
a 3:6 (g) solvent to elastomer ratio and degas for 10 minutes.
Finally, we pour 4g of the mixture onto the membrane and
cure at 100°C on a hot plate for 10 minutes.

B. Internal Electronics

We chose to use the Intel Realsense L515 because it
provides integrated RGB and ToF depth cameras, as well as
the ability to adjust the ToF laser power to bring the minimum
sensing range to approximately 50mm for short range sensing.
The field of view (FOV) of the RGB camera is 70° by 43°and
the FOV of the depth camera is 70° by 55°. Because the FOVs
don’t exactly align, the active sensing area only consists of
the overlapping regions of both FOVs. The cameras output
data through the same USB-C port, which is connected to an
airtight USB-A 3.0 port that goes through the sensor housing.
The internal air pressure sensor samples data at 30Hz and is
connected to a microcontroller. We inflate the membrane to a
gauge pressure of 0.02PSI to reduce the specular reflection of
the internal UV and IR lights.

We soldered three UV LEDs (365nm) onto aluminum heat
sinks and connected them in series with 50mΩ resistance. The
LED circuit is connected to the direct USB power output pin
on the microcontroller, which provides 2.1A. The microcon-
troller is connected to the USB-A port that goes through the
sensor housing. An overview of the internal components of
the sensor system is shown in Figure 2C.

III. SENSOR CHARACTERIZATION

A. Proximity Depth Sensing

In this section, we characterize the proximity depth sensing.
A test stand with discrete slots from 10mm-100mm in 10mm
increments mounts a flat plane parallel to the sensing surface.
Four sheets of white printer paper (92 brightness) cover the flat
plane and encompass the entire FOV of the depth sensing. We
apply the dot correction algorithm and average 20 consecutive
frames for evaluation of the data. The average depth pixel
value of the depth data has an R2 = 0.725 fit with the ground
truth distance.
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Fig. 3. Top row: test object, middle row: corresponding proximity depth map, bottom row: corresponding tactile RGB image with phosphorescent dots for
membrane tracking. A. Solderless breadboard. B. Shark torpedo. C. Nail polish. D. Rubik’s cube.

Figure 3 shows depth maps of objects placed on the surface
of the sensor. We compared the depth maps to the significant
dimensions of each object and found an average overall error
of 4.3%. The sensor showed poorer performance on curved
surfaces, with the average error of 5.5% and much better on
edges, with an average error of 2%.

B. Tactile Sensing

Tactile sensing is achieved by measuring the change in the
internal air pressure and by tracking the motion of the dots
on the internal membrane surface. The dots are detected in
the RGB image with the simple blob detector and tracked
with the Lucas-Kanade optical flow algorithms from OpenCV.
The simple blob detector finds the center coordinates of
each dot in each frame, and then the optical flow calculates
the distance between its initial position and current position.
To detect contact, the total flow velocity summed from all
the dots act as a proxy for the magnitude of membrane
deformation, and therefore total contact force. An RGB image
of an uncontacted and inflated membrane initializes the optical
flow and subsequent frames are compared to the uncontacted
state. The air pressure sensor uses gauge pressure for contact
detection.

Measuring both the internal air pressure and flow velocity
for binary contact detection extends the range of contact that
can be detected. The internal air pressure is more sensitive
to contact and can detect forces below 100g, which are not
sufficient to create an appreciable change in flow velocity.
The flow velocity is particularly useful for detecting tangential
forces and lateral motions of the object along the sensing
surface, which may not produce significant changes in the air
pressure. The sensitivity of the flow velocity contact detection
can be tuned to detect different ranges of forces by changing
the window size of the optical flow algorithm.

IV. DEMONSTRATIONS

We mounted the sensor to a UR10 robot arm and demon-
strated tasks where it could be beneficial to use both proximity
and tactile sensing modalities. Each task can be separated
into “pre-contact”, “during contact”, and “post-contact” stages
that excite both sensing modalities. Furthermore, accurate

Fig. 4. Proximity depth and tactile sensing data: A. Before the sensor makes
contact with the nail polish. B. After the sensor makes contact with the nail
polish.

perception of object behavior in all of these stages is critical
for successful manipulation.

A. Approach and Contact

The robot performs an approach and contact task with a
bottle of nail polish placed on a table. The pose of the end
effector from the robot arm provides the ground truth for the
distance accuracy of the sensor. Data from the same approach
and contact trial are shown in Figure 4.

The sensor’s initial pose is oriented towards the nail polish,
40mm above the object (Figure 4A). The proximity depth map
shows the top of the nail polish clearly in the center, while
the tactile RGB image shows zero deformation of the sensing
surface. The proximity plot on the left estimates the nail polish
is 40mm away from the sensing surface, which is in excellent
agreement with the ground truth. The tactile data plots on
the right also show data that corroborates with the no-contact
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Fig. 5. Proximity depth and tactile sensing data: A. Before the Rubik’s cube
makes contact with the sensor. B. After the Rubik’s cube makes contact.

state: the dot tracking flow velocity is close to zero, and the
air pressure has not changed from the initial air pressure.

The robot arm then moves the sensor towards the bottle at
50mm/s until it makes contact and protrudes 10mm into the
sensing surface (Figure 4B). The proximity depth map shows
the top of the bottle protruding into the surface and outlines
the body of the bottle, while the tactile RGB image shows
the circular top of the bottle producing a deformation of the
sensing surface. The plots on the right show that the proximity
estimation is in good agreement with the ground truth and
that the nail polish is in contact with the sensing surface. The
tactile data plots show a significant increase in dot tracking
flow velocity from the membrane deformation, as well as a
0.15PSI increase in internal air pressure.

B. Catching

To demonstrate catching, the arm-mounted sensor faces the
ceiling and a Rubik’s cube is dropped onto the sensor from
a height of 80mm. Figure 5 consists of data from the same
catching trial, prior to and after contact. All x-axes on the
rightmost plots are time-synchronized.

Figure 5A shows the cube just before making contact
with the sensor. The proximity depth map shows the angular
orientation and the square features of the cube, while the RGB
tactile image shows no deformation. The plots on the right
show that the cube is 7mm above the sensing surface, and the
air pressure and dot tracking flow velocity show little to no
change from initial no-contact conditions.

Figure 5B displays data after the cube settled onto the sens-
ing surface. The proximity depth map and plot shows about
half of the cube protruding 22mm into the membrane. The
tactile RGB image shows some deformation of the membrane
surface, with a small increase in dot tracking flow velocity.

The proximity depth data senses the cube 13 frames before
it makes contact with the membrane. Both the proximity depth
data and tactile sensing data match well qualitatively with a
video recording of the experiment.

Fig. 6. Proximity depth and tactile sensing data, with the target object circled
in yellow: A. Prior to throwing the hex head cap. B. After throwing the hex
head cap.

C. Throwing

In this demonstration, the UR10 arm throws a 46mm diam-
eter PVC hex head cap off the surface of the sensor (Figure 6).
The final speed of the end effector is approximately 1.5m/s.
Until the hex head cap is thrown, it remains in contact with
the sensor, although we observe some lateral rocking during
the wind-up trajectory in both the tactile and proximity data.
Capturing this type of object behavior could be very useful
in predicting object trajectories after a throw. The tactile and
proximity data both show loss of contact at the end of the
throw. After the hex head cap is thrown, the sensor captures
6 frames of the hex head cap’s initial projectile motion.

V. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a novel multimodal proxim-
ity depth and visuotactile sensor enabled by a selectively
transmissive elastomer membrane. We presented the design
and fabrication techniques for each component of the sensor,
and we evaluated the proximity depth data across a distance
range of 10mm-100mm. Both the binary contact detection
and proximity depth modalities were tested with an object
dataset consisting of nail polish, Rubik’s cube, breadboard,
shark torpedo, and PVC hex head cap.

We integrated the sensor into an end-effector to mount on
a UR10 robot arm and demonstrated it in three open-loop
tasks where the mixed modality of the sensor could provide an
advantage. The demonstrations and quality of the data show
potential for the application of this sensor to capture target
object behavior before, during, and after contact in dynamic
and dexterous manipulation tasks.

Moving forward, we plan to work on the fusion of tactile
and proximity data for contact patch and force estimation.
Due to the nonlinear mechanics introduced by the use of a
highly deformable elastomeric membrane, it is challenging
to precisely relate force, deformation, and geometry. With
force estimations and expanded tactile sensing capabilities, the
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sensor could be used to develop dynamic and dexterous control
policies using proximity and tactile data.
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