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Abstract— Designing as well as modeling is challenging in soft
robotics. In this study, we propose thinking both topics together.
This can be done by already taking the modeling into account
when designing. Vice versa, the model can be used to tune
the design parameters to fit a desired task. As demonstrated
using the example of a pneumatic multi-chamber actuator, an
efficient and an easy-to-model design both fulfill equal demands.
The analytic model of the actuator is simple and allows for
interpretation of the influence of design parameters. This is
a promising result which encourages applying it to soft robot
designs using other motion mechanisms.

I. INTRODUCTION

Designing and modeling soft actuators is an important field
in soft robotics. The variety of designs is large and continu-
ous to grow. As many examples from literature show, novel
designs are often presented accompanied by an experimental
investigation, e.g. in [1], or by a model, e.g. in [2] and [3].
Conversely, new modeling methods are often related to an
existing design, e.g. in [4] and [5]. However, in both cases,
either the focus is on the design or on the model.

Our approach is to take into account the interdependence
of designing and modeling, i.e., to choose a design that is
beneficial for modeling, and to choose a model that provides
important information on design parameters. We demonstrate
this idea using the example of a pneumatic multi-chamber
actuator. The design is subject of section II, while the model
is subject of section III. Finally, we conclude our findings in
section IV.

II. DESIGN

In a recent study of the authors [6], a design for a modular
pneumatic multi-chamber bending actuator is derived by
systematic investigation. As shown in Fig. 1, the actuator
consists of three parallel cylindrical chambers bonded by end
caps and a linking element between the end caps. Multiple
modules can be stacked by replacing one of the end caps with
a connector cap. The chambers are reinforced by rings in
order to reduce the manufacturing effort compared to a fiber
reinforcement. However, since the distance between rings is
relatively large, ballooning occurs at higher pressure.

The study comprises three design aspects that have an
important impact on modeling: the shape of the cross section
of the chambers, their reinforcement and their bonding.
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A. Cross section

Three examples for different shapes of cross section are
shown in Fig. 2. A comparison of the bending angle that
actuators with these cross sections achieve, shows that a
turned semicircular and a circular cross section perform
approximately equal [6]. However, the semicircular cross
section deforms to circular when pressurized, which leads
to high stresses at the former edges [7]. Therefore, the cross
section of multi-chamber bending actuators should be chosen
circular.

This has a positive side effect on modeling. Independent
from the model, a simple geometry, e.g. circular, is ad-
vantageous since it simplifies finding the kinematics of the
chambers.

B. Reinforcement

The reinforcement prevents the chambers from ballooning
when pressurized. Rather, the chambers are forced to elon-
gate.

In a preliminary study of the authors [8], the stretch
behavior of individual cylindrical chambers is investigated
for different reinforcements by using an analytic model.
A typical technique for reinforcing pneumatic actuators is
wrapping fibers around it. The analytic model indicates that
the fiber angle has a significant influence on the linearity
between pressure and stretch. Another technique is using
rings as done by the actuator in Fig. 1. Here, the distance
between rings has a significant influence on the linearity
between pressurization and stretch, see Fig. 3.

C. Bonding of chambers

The working principle of multi-chamber actuators is trans-
forming the elongation of the individual chambers into a
bending of the whole actuator by a parallel alignment. In
general, this can be achieved by two techniques: either
embedding the chambers into a body of silicone, or using
linking elements in order to bond individually manufactured
chambers. The latter provides better bending performance
since any dispensable material opposes bending. As long as
the distance between linking elements is small enough to
prevent buckling, they can be both stiff or flexible.

Similar to a circular cross section, using linking elements
has also a positive side effect on modeling since the geo-
metric complexity is reduced. The linking elements can be
considered rigid or semi-rigid, respectively, in the model, i.e.
rigid elements only have an influence on the kinematics but
do not deform.



a) b) c)

Fig. 1: Modular actuator assembled a), its dimensions and name of its components b), and a connector cap that can be used
instead of an end cap to stack modules c). The sideview shows a cut through the middle plane of the actuator.

Fig. 2: Actuators with semicircular, turned semicircular,
and circular shaped cross sections (rigid linking elements
between chambers are indicated gray) [6]

Fig. 3: Stretch of a pneumatic cylinder as a function of
pressure for continuous reinforcement and varying distance
between rings [6]

III. MODEL

A common technique for modeling slender soft actuators
is the Cosserat beam theory which is used by many, e.g
in [4]. Due to a reduction of the three-dimensional actuator
to a one-dimensional beam reduces computational costs. The
Cosserat beam theory is of special interest in soft robotics
since it covers not only bending, but also elongation, torsion
and shear.

In the first part of this section, we introduce the Cosserat
beam theory and its most important parameters. In the second
and third part, we introduce a novel method for the analytic
derivation of these parameters for multi-chamber bending
actuators, and offer an interpretation of the equations derived.

A. Cosserat beam theory

The Cosserat beam theory defines the beam as a curve
r(s) in space, where s is the arc-length parameter, see Fig. 4.
The orientation of each point of the curve can be expressed

Fig. 4: Coordinate systems of the Cosserat beam

either by a global coordinate system (e1, e2, e3) or by local
directors (d1, d2, d3), where (Φ,Θ,Ψ) express the rotation
between both systems.

For the statical case, the classical form of equations for
the special theory of Cosserat beams is

n′ + f = 0 (1)
m′ + v × n+ l = 0, (2)

where v is the tangent of r, f and l are the body force
and body moment per length, m comprises the bending and
twisting moments, and n comprises the shear forces and the
axial force.

In this study we assume that the body forces and moments
are defined by the constitutive relations

n = K(v − d3) (3)
m = J(u− u0), (4)

where u measures flexure and twist, respectively. According
to the classical linear approaches in beam theory we define
K as

K = Kij(di ⊗ dj) (5)

Kij =

kGA 0 0
0 kGA 0
0 0 EA

 ,

with kGA the shear stiffness and EA the extensional stiff-



Fig. 5: Scheme of a multi-chamber bending actuator

ness. Analogous, we define J as

J = Jij(di ⊗ dj) (6)

Jij =

EI 0 0
0 EI 0
0 0 GI


with EI the bending stiffness and GI the torsional stiffness.

In summary, the following parameters need to be known
for a full description of the beam:

• extensional stiffness EA
• bending stiffness EI (two directions)
• shear stiffness κGA (two directions)
• torsional stiffness GI

The parameter derivation in the next part focuses on the
extensional stiffness EA and the bending stiffness EI .

B. Parameter derivation

For deriving the parameters of the beam, we assume an
actuator with three identical cylindrical chambers bonded by
linking elements as shown in Fig. 5. The distance between
the chambers always remains equal. The stretch ratio of each
individual chamber λi is

λi = (EcAc)
−1 · (piAp + Fi) + 1, (7)

where EcAc is the extensional stiffness of the chambers and
Fi is the axial force. The pressurization of the individual
chamber pi with the area of attack Ap also induces an axial
force.

We assume that the bending stiffness of an individual
cylinder is negligible compared to its extensional stiffness.
This can be shown by regarding the energy of the system, but
is beyond the scope of this study. Additionally, we assume
that the actuator has a constant curvature. This assumption
is not necessary anymore once the parameters of the beam
are found. With these assumptions and the distance between
chambers a, we find a kinematic relation between the stretch
λ and the curvature κ of the bending actuator, and the length
of the individual chambers

λi = λi(λ, κ) (8)

We can find the length and the curvature of the bend-
ing actuator by substituting Equation 8 in Equation 7. By
definition, the extensional stiffness is the relation between

axial force and axial stretch, and the bending stiffness is the
relation between bending moment and curvature. Relating
an arbitrary force and moment to the resulting deformation
vanishes the former and we find that the extensional stiffness
EA and the bending stiffness EI of the actuator are

EA = 3 · EcAc (9)

EI = 1.5 · EcAc · λ · a2. (10)

Please note that these parameters are universal without be-
ing restricted to constant curvature. Furthermore, the method
can be extended to geometrically more complex actuators,
e.g. with chambers embedded in silicone, but with higher
errors due to stronger simplification of the geometry, and
to actuators with a different number of chambers. In the
derivation presented, the extensional stiffness is assumed as
linear, but nonlinear extensional stiffness would be possible
as well.

C. Interpretation

Due to the simple formulation of Equation 9 and Equa-
tion 10, interpretation of the equations becomes possible. The
results of the interpretation can be used to tune the design
in section II such that it efficiently fulfills a desired task.

1) Extensional stiffness: According to Equation 9, the
extensional stiffness of the bending actuator EA is a multiple
of the extensional stiffness of its individual chambers EcAc.
The factor is similar to the number of chambers n.

As already mentioned, the extensional stiffness in this
study is assumed to be linear, which needs not necessarily to
be the case. There is no requirement for the method of deter-
mining the extensional stiffness. It can be done analytically
as in a preliminary study of the authors [8] and many others,
or by experimental investigation. For all methods, findings on
individual chambers are directly applicable to multi-chamber
bending actuators.

2) Bending stiffness: Similar to the extensional stiffness,
the equation of the bending stiffness contains a factor, which
is 1.5 in Equation 10. This factor also depends on the number
of chambers n and is n/2 if n > 2.

Since the bending stiffness of the individual chambers
is neglected in the derivation, the bending stiffness of the
whole actuator depends only on the extensional stiffness
of the individual chambers. This is in accordance with
the visible behavior of such actuators that bending always
coincides with stretching. Thus, findings on the extensional
stiffness of individual chambers are not only applicable to
the extensional stiffness of multi-chamber actuators, but also
to their bending stiffness.

The dependency of the bending stiffness on the current
length of the actuator λ is an important finding. Bending is
caused by a difference of length of the chambers. The larger
the actuator stretches, the larger the difference in length must
be to achieve the same curvature. Consequently, the bending
moment must increase as well.

Obviously, the spatial arrangement of the chambers has an
influence on the bending stiffness. This is taken into account



by the distance between the central points of the chambers
and of the actuator a.

Interestingly, the bending stiffness is independent from the
direction of bending as long as the number of chambers
is three or higher. This can be explained by the spatial
arrangement of the chambers in a circle.

IV. CONCLUSION

In this study, we propose taking the interdependence of
designing and modeling into account in soft robotics. A
pneumatic multiple-chamber actuator serves as an example
for the idea.

In section II, we introduce a multi-chamber bending actu-
ator that is subject of a recent study of the authors. Hereby,
we highlight those design aspects with a significant influence
on modeling. A simple beam model of the actuator, which
benefits from the design, is introduced in section III. The
extensional stiffness and the bending stiffness of the bending
actuator can be derived from the extensional stiffness of
its individual chambers. Since the equations derived are
simple, interpretation of the individual parameters having an
influence on the extensional stiffness and bending stiffness
becomes possible. The designing of the bending actuator
benefits from this interpretation, since tuning its parameters
to efficiently fulfill a desired task becomes possible.

Future work comprises two aspects. On the one hand,
finding similar methods in order to derive the shear stiffness
and torsional stiffness. Both parameters are necessary for

a full description of the beam. On the other hand, making
the method as universal as possible by adding non-linear
materials and more complex geometries.
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